3.1.43 \(\int \frac {a+b \log (c x^n)}{x (d+e x)^2} \, dx\) [43]

3.1.43.1 Optimal result
3.1.43.2 Mathematica [A] (verified)
3.1.43.3 Rubi [A] (verified)
3.1.43.4 Maple [C] (warning: unable to verify)
3.1.43.5 Fricas [F]
3.1.43.6 Sympy [F]
3.1.43.7 Maxima [F]
3.1.43.8 Giac [F]
3.1.43.9 Mupad [F(-1)]

3.1.43.1 Optimal result

Integrand size = 21, antiderivative size = 80 \[ \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2} \, dx=-\frac {e x \left (a+b \log \left (c x^n\right )\right )}{d^2 (d+e x)}-\frac {\log \left (1+\frac {d}{e x}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^2}+\frac {b n \log (d+e x)}{d^2}+\frac {b n \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d^2} \]

output
-e*x*(a+b*ln(c*x^n))/d^2/(e*x+d)-ln(1+d/e/x)*(a+b*ln(c*x^n))/d^2+b*n*ln(e* 
x+d)/d^2+b*n*polylog(2,-d/e/x)/d^2
 
3.1.43.2 Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.20 \[ \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2} \, dx=\frac {\frac {2 d \left (a+b \log \left (c x^n\right )\right )}{d+e x}+\frac {\left (a+b \log \left (c x^n\right )\right )^2}{b n}-2 b n (\log (x)-\log (d+e x))-2 \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )-2 b n \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{2 d^2} \]

input
Integrate[(a + b*Log[c*x^n])/(x*(d + e*x)^2),x]
 
output
((2*d*(a + b*Log[c*x^n]))/(d + e*x) + (a + b*Log[c*x^n])^2/(b*n) - 2*b*n*( 
Log[x] - Log[d + e*x]) - 2*(a + b*Log[c*x^n])*Log[1 + (e*x)/d] - 2*b*n*Pol 
yLog[2, -((e*x)/d)])/(2*d^2)
 
3.1.43.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.18, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2789, 2751, 16, 2779, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2} \, dx\)

\(\Big \downarrow \) 2789

\(\displaystyle \frac {\int \frac {a+b \log \left (c x^n\right )}{x (d+e x)}dx}{d}-\frac {e \int \frac {a+b \log \left (c x^n\right )}{(d+e x)^2}dx}{d}\)

\(\Big \downarrow \) 2751

\(\displaystyle \frac {\int \frac {a+b \log \left (c x^n\right )}{x (d+e x)}dx}{d}-\frac {e \left (\frac {x \left (a+b \log \left (c x^n\right )\right )}{d (d+e x)}-\frac {b n \int \frac {1}{d+e x}dx}{d}\right )}{d}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\int \frac {a+b \log \left (c x^n\right )}{x (d+e x)}dx}{d}-\frac {e \left (\frac {x \left (a+b \log \left (c x^n\right )\right )}{d (d+e x)}-\frac {b n \log (d+e x)}{d e}\right )}{d}\)

\(\Big \downarrow \) 2779

\(\displaystyle \frac {\frac {b n \int \frac {\log \left (\frac {d}{e x}+1\right )}{x}dx}{d}-\frac {\log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d}}{d}-\frac {e \left (\frac {x \left (a+b \log \left (c x^n\right )\right )}{d (d+e x)}-\frac {b n \log (d+e x)}{d e}\right )}{d}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {\frac {b n \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d}-\frac {\log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d}}{d}-\frac {e \left (\frac {x \left (a+b \log \left (c x^n\right )\right )}{d (d+e x)}-\frac {b n \log (d+e x)}{d e}\right )}{d}\)

input
Int[(a + b*Log[c*x^n])/(x*(d + e*x)^2),x]
 
output
-((e*((x*(a + b*Log[c*x^n]))/(d*(d + e*x)) - (b*n*Log[d + e*x])/(d*e)))/d) 
 + (-((Log[1 + d/(e*x)]*(a + b*Log[c*x^n]))/d) + (b*n*PolyLog[2, -(d/(e*x) 
)])/d)/d
 

3.1.43.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 2751
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x 
_Symbol] :> Simp[x*(d + e*x^r)^(q + 1)*((a + b*Log[c*x^n])/d), x] - Simp[b* 
(n/d)   Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q, r}, 
x] && EqQ[r*(q + 1) + 1, 0]
 

rule 2779
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r 
_.))), x_Symbol] :> Simp[(-Log[1 + d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)) 
, x] + Simp[b*n*(p/(d*r))   Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^(p - 
 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]
 

rule 2789
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_))/ 
(x_), x_Symbol] :> Simp[1/d   Int[(d + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/x 
), x], x] - Simp[e/d   Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x], x] /; Free 
Q[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 
3.1.43.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.44 (sec) , antiderivative size = 229, normalized size of antiderivative = 2.86

method result size
risch \(-\frac {b \ln \left (x^{n}\right ) \ln \left (e x +d \right )}{d^{2}}+\frac {b \ln \left (x^{n}\right )}{d \left (e x +d \right )}+\frac {b \ln \left (x^{n}\right ) \ln \left (x \right )}{d^{2}}-\frac {b n \ln \left (x \right )^{2}}{2 d^{2}}+\frac {b n \ln \left (e x +d \right )}{d^{2}}-\frac {b n \ln \left (x \right )}{d^{2}}+\frac {b n \ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{d^{2}}+\frac {b n \operatorname {dilog}\left (-\frac {e x}{d}\right )}{d^{2}}+\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}-\frac {i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{2}+b \ln \left (c \right )+a \right ) \left (-\frac {\ln \left (e x +d \right )}{d^{2}}+\frac {1}{d \left (e x +d \right )}+\frac {\ln \left (x \right )}{d^{2}}\right )\) \(229\)

input
int((a+b*ln(c*x^n))/x/(e*x+d)^2,x,method=_RETURNVERBOSE)
 
output
-b*ln(x^n)/d^2*ln(e*x+d)+b*ln(x^n)/d/(e*x+d)+b*ln(x^n)/d^2*ln(x)-1/2*b*n/d 
^2*ln(x)^2+b*n*ln(e*x+d)/d^2-b*n/d^2*ln(x)+b*n/d^2*ln(e*x+d)*ln(-e*x/d)+b* 
n/d^2*dilog(-e*x/d)+(-1/2*I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+1/2*I 
*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-1/2 
*I*b*Pi*csgn(I*c*x^n)^3+b*ln(c)+a)*(-1/d^2*ln(e*x+d)+1/d/(e*x+d)+1/d^2*ln( 
x))
 
3.1.43.5 Fricas [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{2} x} \,d x } \]

input
integrate((a+b*log(c*x^n))/x/(e*x+d)^2,x, algorithm="fricas")
 
output
integral((b*log(c*x^n) + a)/(e^2*x^3 + 2*d*e*x^2 + d^2*x), x)
 
3.1.43.6 Sympy [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2} \, dx=\int \frac {a + b \log {\left (c x^{n} \right )}}{x \left (d + e x\right )^{2}}\, dx \]

input
integrate((a+b*ln(c*x**n))/x/(e*x+d)**2,x)
 
output
Integral((a + b*log(c*x**n))/(x*(d + e*x)**2), x)
 
3.1.43.7 Maxima [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{2} x} \,d x } \]

input
integrate((a+b*log(c*x^n))/x/(e*x+d)^2,x, algorithm="maxima")
 
output
a*(1/(d*e*x + d^2) - log(e*x + d)/d^2 + log(x)/d^2) + b*integrate((log(c) 
+ log(x^n))/(e^2*x^3 + 2*d*e*x^2 + d^2*x), x)
 
3.1.43.8 Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x + d\right )}^{2} x} \,d x } \]

input
integrate((a+b*log(c*x^n))/x/(e*x+d)^2,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)/((e*x + d)^2*x), x)
 
3.1.43.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{x\,{\left (d+e\,x\right )}^2} \,d x \]

input
int((a + b*log(c*x^n))/(x*(d + e*x)^2),x)
 
output
int((a + b*log(c*x^n))/(x*(d + e*x)^2), x)